Symbiont switching and trophic mode shifts in Orchidaceae
نویسندگان
چکیده
منابع مشابه
Ecosystem regime shifts disrupt trophic structure.
Regime shifts between alternative stable ecosystem states are becoming commonplace due to the combined effects of local stressors and global climate change. Alternative states are characterized as substantially different in form and function from pre-disturbance states, disrupting the delivery of ecosystem services and functions. On coral reefs, regime shifts are typically characterized by a ch...
متن کاملTime- and depth-wise trophic niche shifts in Antarctic benthos
Climate change is expected to affect resource-consumer interactions underlying stability in polar food webs. Polar benthic organisms have adapted to the marked seasonality characterising their habitats by concentrating foraging and reproductive activity in summer months, when inputs from sympagic and pelagic producers increase. While this enables the persistence of biodiverse food webs, the mec...
متن کاملMode Switching
In many control applications, a speciic set of output tracking controllers of satisfactory performance have already been designed and must be used. When such a collection of control modes is available, an important problem is to be able to accomplish a variety of high level tasks by appropriately switching between the low-level control modes. In this paper, we deene a concept of control modes, ...
متن کاملPlant species loss decreases arthropod diversity and shifts trophic structure.
Plant diversity is predicted to be positively linked to the diversity of herbivores and predators in a foodweb. Yet, the relationship between plant and animal diversity is explained by a variety of competing hypotheses, with mixed empirical results for each hypothesis. We sampled arthropods for over a decade in an experiment that manipulated the number of grassland plant species. We found that ...
متن کاملTrophic signatures of seabirds suggest shifts in oceanic ecosystems
Pelagic ecosystems are dynamic ocean regions whose immense natural capital is affected by climate change, pollution, and commercial fisheries. Trophic level-based indicators derived from fishery catch data may reveal the food web status of these systems, but the utility of these metrics has been debated because of targeting bias in fisheries catch. We analyze a unique, fishery-independent data ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: New Phytologist
سال: 2021
ISSN: 0028-646X,1469-8137
DOI: 10.1111/nph.17414